SIMULATION OF DYNAMIC PROCESSES IN ARTIFICIAL INTELLIGENCE PROBLEMS

  • Dmytro Drynov National Defence University of Ukraine
  • Mykhailo Mos’ondz National Defence University of Ukraine
  • Dmytro Avramenko National Defence University of Ukraine
Keywords: modeling, artificial intelligence, dynamic processes, system performance

Abstract

The topic of modeling dynamic processes in artificial intelligence (AI) tasks is highly relevant due to several compelling reasons. Firstly, as AI technologies continue to advance rapidly, there is an increasing demand for sophisticated algorithms and systems capable of understanding and responding to dynamic environments. Dynamic processes are inherent in many real-world scenarios, such as financial markets, supply chains, and autonomous vehicle navigation. Modeling these dynamics accurately is crucial for developing AI systems that can adapt and perform effectively in complex and ever-changing environments. Secondly, the ability to model dynamic processes is essential for achieving more human-like intelligence in AI systems. Human cognition is inherently dynamic, as individuals perceive, interpret, and respond to constantly changing stimuli and situations. By incorporating dynamic modeling techniques into AI algorithms, researchers can strive to emulate this aspect of human intelligence, leading to more robust and versatile AI systems. Furthermore, dynamic modeling in AI is essential for various applications, including predictive analytics, optimization, decision-making, and control. For example, in finance, accurate modeling of dynamic market trends is critical for making informed investment decisions. In healthcare, dynamic modeling can help predict disease outbreaks and optimize treatment strategies. In robotics, dynamic modeling enables precise control of robot movements in dynamic environments. The article examines the issue of modeling dynamic processes in artificial intelligence tasks. It is noted that the modeling of dynamic processes in artificial intelligence tasks includes the use of various methods for describing and analyzing changes in artificial intelligence systems or agents over time. This may include aspects such as evolution of system state, changes in input data, adaptation to new conditions, learning and improvement of skills, etc. Modeling dynamic processes in artificial intelligence tasks allows you to study and analyze the behavior of a system or an agent in changing conditions, develop more effective decision-making strategies, and increase the overall performance of the system.

References

Методи та системи штучного інтелекту : навчальний посібник. Укл. Д. В. Лубко, С. В. Шаров. Мелітополь : ФОП Однорог Т.В., 2019. 264 с.

Шаховська Н. Б., Камінський Р. М., Вовк О. Б. Системи штучного інтелекту. Навчальний посібник. Львів : Видавництво Львівської політехніки, 2018. 392 с.

Баландіна Н. М., Бойко В. Д., Василенко М. Д. Штучний інтелект в системі розумного міста : матеріали LVII міжнародної інтернет-конференції «Наукові підсумки 2020 року» (м. Вінниця, 17 грудня 2020 р.). Вінниця, 2020. С. 12–15.

Хусаїнов Д. Я. Оцінки збіжності в одній моделі нейродинаміки Хопфилда. Вісник Київського університету. Серія: Кібернетика. 2016. Вип. 4. С. 129–132.

Квєтний Р. Н., Богач І. В., Бойко О. Р., Софина О. Ю., Шушура О. М. Комп’ютерне моделювання систем та процесів. Методи обчислень. Частина 1 : навчальний посібник. Вінниця : ВНТУ, 2012.

Руденко О. Г., Бодянський Є. В. Штучні нейронні мережі : навчальний посібник. Харків : ТОВ «Компанія СМІТ», 2006. 404 с.

Metody ta systemy shtuchnoho intelektu: navchalnyi posibnyk [Methods and systems of artificial intelligence: education tutorial] (2019) Ukl. D. V. Lubko, S. V. Sharov. Melitopol: FOP Odnoroh T.V. 264 p.

Shakhovska N. B., Kaminskyi R. M., Vovk O. B. (2018). Systemy shtuchnoho intelektu [Artificial intelligence systems]. Navchalnyi posibnyk. Lviv: Vydavnytstvo Lvivskoi politekhniky, 392 p.

Balandina N. M., Boyko V. D., Vasylenko M. D. (2020) Shtuchnyi intelekt v systemi rozumnoho mista: materialy LVII mizhnarodnoi internet-konferentsii "Naukovi pidsumky 2020 roku" [Artificial intelligence in the smart city system: materials of the LVII international internet conference "Scientific results of 2020"] (Vinnytsia, December 17, 2020). Vinnytsia. P. 12–15.

Husainov D. Ya. (2016) Otsinky zbizhnosti v odnii modeli neirodynamiky Khopfylda [Convergence estimates in one Hopfield model of neurodynamics]. Otsinky zbizhnosti v odnii modeli neirodynamiky Khopfylda. P. 129–132.

Kvetny R. N., Bogach I. V., Boyko O. R., Sofina O. Yu., Shushura O. M. (2012). Computer modeling of systems and processes. Calculation methods. Part 1: study guide, Vinnytsia: VNTU.

Rudenko O. G., Bodyanskyi E. V. (2006). Artificial neural networks: Training manual. Kharkiv. LLC "SMITH Company", 404 p.

Published
2024-04-19
How to Cite
Drynov, D., Mos’ondz, M., & Avramenko, D. (2024). SIMULATION OF DYNAMIC PROCESSES IN ARTIFICIAL INTELLIGENCE PROBLEMS. Change Management and Innovation, (9), 25-27. https://doi.org/10.32782/CMI/2024-9-5