BIG DATA ANALYTICS IN SHIPBUILDING: ECONOMIC CONTENT AND PROCESS SEQUENCE

Keywords: economics, industry, shipbuilding, ship construction and marketing, economic analysis, big data, big data analysis

Abstract

The article presents the authors’ perspective on the critical role that big data analytics plays in the post-war recovery of shipbuilding enterprises in Ukraine. It is emphasized that the execution of key management functions necessarily involves analytical activity, which covers all segments of the value chain for products or services, as well as the components of the managerial decision-making process. The study outlines the subject area of economic analysis in this context, focusing on business activity. The purpose of the analysis is defined as the comparison of planned and actual performance indicators and the identification of factors that have contributed to positive or negative deviations. Particular attention is paid to the importance of big data analytics. The article proposes criteria for qualifying the volumes of data available to management as big data. Evidence is provided of the continuous growth in data generation, along with examples of its sources. A graphical model of the big data analysis process is proposed, accompanied by a concise description of each of its stages. It is highlighted that big data analytics is a cyclically recurring activity that evolves through the use of ever-advancing hardware and software tools. In recent years, artificial intelligence has taken a leading role among them. The hypothesis is advanced that the emergence of AI is a response to the challenges caused by the exponential growth of data volumes. The article identifies the key barriers hindering the implementation of big data analytics in shipbuilding enterprises, including a lack of professional competencies among personnel, resistance to innovation from certain employee groups, high costs of software and technical tools, and ongoing expenses for maintaining the necessary corporate infrastructure. Based on an analysis of best practices among leading industry organizations, the authors conclude that these challenges are best addressed by those enterprises that have established long-term and effective cooperation with foreign investors. Emulating this experience should become a priority for all stakeholders interested in the revitalization of Ukraine’s shipbuilding industry.

References

Путінцев А.В., Мала С.І. Сучасні аспекти методології наукових досліджень у фінансовій сфері. Економічний вісник Донбасу, 2024, №1-2 (75-76), с. 36-41.

Черняк О.П., Круглій О.Р. Основні технології інтелектуального аналізу тексту. Наукові відкриття та фундаментальні наукові дослідження: світовий досвід: збірник наукових праць з матеріалами V Міжнародної наукової конференції, Полтава, 8.11.2024 р. Міжнародний центр наукових досліджень. Вінниця : ТОВ «УКРЛОГОС Груп», 2024, 510 с., с. 341-347.

Копчак Ю., Лобунець Т., Луковський Р. Swot-аналіз як важливий інструмент у розробці стратегії бізнесу. Економіка та суспільство, 2024, вип. 61. URL: https://economyandsociety.in.ua/index.php/journal/article/view/3868/3788 (дата звернення: 10.04.2025).

Пілюков А.О. Компаративний аналіз теорій і підходів до управління проектами. Київський економічний науковий журнал, 2024, № 5, с. 114-120.

Шевченко С.М., Жданова Ю.Д., Шевцова Т.І. Застосування кластерного аналізу для просування бізнесу у соціальних мережах. Вісник ХНТУ, 2023, № 4, с. 271-281.

Big data: definition, benefits, challenges (infographics). European Parlament, 2021. URL: https://www.europarl.europa.eu/topics/en/article-/20210211STO97614/big-data-definition-benefits-challenges-infographics (дата звернення: 12.04.2025).

Volume of data/information created, captured, copied, and consumed worldwide from 2010 to 2023, with forecasts from 2024 to 2028 (in zettabytes). 2024. Statista. URL: https://www.statista.com/statistics/871513/worldwide-data-created/ (дата звернення: 10.04.2025).

Putintsev A. V., Mala S. I. (2024). Suchasni aspekty metodolohii naukovykh doslidzhen u finansovii sferi [Modern aspects of scientific research methodology in the financial sphere]. Ekonomichnyi Visnyk Donbasu, vol.1-2 (75-76), pp. 36–41. (in Ukrainian)

Cherniak O. P., Kruhlii O. R. (2024). Osnovni tekhnolohii intelektualnoho analizu tekstu [Main technologies of intelligent text analysis]. Naukovi vidkryttia ta fundamentalni naukovi doslidzhennia: svitovyi dosvid: zbirnyk naukovykh prats z materialamy V Mizhnarodnoi naukovoi konferentsii, Poltava, 8.11.2024 (pp. 341–347). Mizhnarodnyi tsentr naukovykh doslidzhen. Vinnytsia: TOV “UKRLOHOS Hrup” 510 p. (in Ukrainian)

Kopchak Yu., Lobunets T., Lukovskyi R. (2024). Swot-analiz yak vazhlyvyi instrument u rozrobtsi stratehii biznesu [SWOT analysis as an important tool in the development of business strategy]. Ekonomika ta Suspilstvo, vol. 61. Available at: https://economyandsociety.in.ua/index.php/journal/article/view/3868/3788 (accessed April 10, 2025).

Piliukov A. O. (2024). Komparatyvnyi analiz teorii i pidkhodiv do upravlinnia proektamy [Comparative analysis of theories and approaches to project management]. Kyivskyi Ekonomichnyi Naukovyi Zhurnal, vol. 5, pp. 114–120. (in Ukrainian)

Shevchenko S. M., Zhdanova Yu. D., Shevtsova T. I. (2023). Zastosuvannia klasternoho analizu dlia prosuvannia biznesu u sotsialnykh merezhakh [Application of cluster analysis for business promotion in social networks]. Visnyk KhNTU, vol. 4, pp. 271–281. (in Ukrainian)

European Parliament. (2021). Big data: definition, benefits, challenges (infographics). Available at: https://www.europarl.europa.eu/topics/en/article-/20210211STO97614/big-data-definition-benefits-challenges-infographics (accessed April 12, 2025).

Statista. (2024). Volume of data/information created, captured, copied, and consumed worldwide from 2010 to 2023, with forecasts from 2024 to 2028 (in zettabytes). Available at: https://www.statista.com/statistics/871513/worldwide-data-created/ (accessed April 10, 2025).

Published
2025-05-28
How to Cite
ZhukovaО., & Polietaiev, D. (2025). BIG DATA ANALYTICS IN SHIPBUILDING: ECONOMIC CONTENT AND PROCESS SEQUENCE. Change Management and Innovation, (14), 14-18. https://doi.org/10.32782/CMI/2025-14-2